
Linear Algebra & Geometry
LECTURE 11

• Systems of Linear Equations

• Kronecker-Cappelli Theorem

• Determinant



SYSTEMS OF LINEAR EQUATIONS

A system of linear equations

(∗)

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1
𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2

. . .
𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + …+ 𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚

can be represented as a single matrix equation 𝐴𝑋 = 𝐵, where 𝐴
= [ai,j] is called the coefficient matrix, 

𝑋 =

𝑥1
⋮
𝑥𝑛

and 𝐵 =
𝑏1
⋮
𝑏𝑚

. 𝑋 and 𝐵 are single-column matrices.



The system of linear equations (∗) can also be represented as a 
vector equation

𝑥1

𝑎1,1
𝑎2,1
⋮

𝑎𝑚,1

+ 𝑥2

𝑎1,2
𝑎2,2
⋮

𝑎𝑚,2

+ …+ 𝑥𝑛

𝑎1,𝑛
𝑎2,𝑛
⋮

𝑎𝑚,𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑚

Which means we are trying to find coefficients to express 𝐵 as a 
linear combination of columns of 𝐴. This can only be done if 

span{𝐶1, 𝐶2, … , 𝐶𝑛} = span{𝐶1, 𝐶2, … , 𝐶𝑛, 𝐵}. 

The matrix with columns 𝐶1, 𝐶2, … , 𝐶𝑛 and 𝐵 is called the 
augmented matrix of the system of equations and is denoted by 
[𝐴|𝐵].

𝐶1 𝐶2 𝐶𝑛 𝐵



Theorem. (Kronecker, Cappelli)

A system 𝐴𝑋 = 𝐵 of linear equations has a solution iff 

𝑟(𝐴) = 𝑟([𝐴|𝐵]).

Proof. The vector-oriented approach form the previous slide 
together with properties of the span operation is proof enough.

Remark.

Interchanging equations, multiplying both sides by a non-zero 
number and adding equations one to another do not affect the set 
of solutions of a system of equations. EROS are exactly these 
operations except that they are performed on rows of a matrix 
rather than on equations. This suggests a strategy for solving a 
system of equations. Start with a system (∗), represent it as its 
augmented matrix [A|B], row-reduce the matrix to a row echelon 
matrix [E|C], translate the matrix to the language of equations.



Consider the system 

ቐ

2𝑥 + 4𝑦 − 𝑧 = 11
−4𝑥 − 3𝑦 + 3𝑧 = −20

2𝑥 + 4𝑦 + 2𝑧 = 2

Its augmented matrix is
2 4 −1 11
−4 −3 3 −20
2 4 2 2

~(𝑟3 − 𝑟1, 𝑟2 + 2𝑟1)
2 4 −1 11
0 5 1 2
0 0 3 −9

. 

Clearly, the rank of both 𝐴 and [𝐴|𝐵] is 3 which means the system 
is solvable. Let us reduce [𝐴|𝐵] to a row-canonical matrix.

~(𝑟1 +
1

3
𝑟3, 𝑟2 −

1

3
𝑟3,

1

3
𝑟3)

2 4 0 8
0 5 0 5
0 0 1 −3

~ 𝑟1 −
4

5
𝑟2,

1

5
𝑟2

2 0 0 4
0 1 0 1
0 0 1 −3

~(
1

2
𝑟1)

1 0 0 2
0 1 0 1
0 0 1 −3

, which is the matrix of 

𝑥 = 2, 𝑦 = 1 𝑎𝑛𝑑 𝑧 = −3.



Definition.

A system of linear equations 𝐴𝑋 = 𝐵 is called homogeneous iff 𝐵 =
Θ.

Fact.

Every homogeneous system of linear equations has a solution, 
namely 𝑥1 = 0, 𝑥2 = 0, … , 𝑥𝑛 = 0. Any other solution (if

there is one) is called a non-trivial or non-zero solution.



Theorem.

Let 𝐴𝑋 = Θ be a homogeneous system of m linear equations with n
unknowns. Then the set 𝑊 = {𝑣 ∈ 𝕂𝑛|𝐴𝑣 = Θ} of all solutions of 
the system is a subspace of the vector space 𝕂𝑛. Moreover,

dim(𝑊) = 𝑛 − 𝑟 (𝐴).

Proof. (of the first statement)

Take 𝑢, 𝑣 ∈ 𝑊. This means that 𝐴𝑢 = Θ and 𝐴𝑣 = Θ. Since 
matrix multiplication is distributive over addition, we have 𝐴(𝑢 +
𝑣) = 𝐴𝑢 + 𝐴𝑣 =  +  =  i.e., 𝑢 + 𝑣 ∈ 𝑊.

Similarly, we prove that for every k ∈ 𝕂 we have 𝐴 𝑘𝑢 = 𝑘(𝐴𝑢) =
𝑘 = .

We skip the proof of the second statement. QED



Example.

ቐ

x + y − z = 0

2x − 3y + z = 0

x − 4y + 2z = 0

𝐴 =
1 1 −1
2 −3 1
1 −4 2

~ 𝑟2 − 2𝑟1, 𝑟3 − 𝑟1 ~

1 1 −1
0 −5 3
0 −5 3

~ 𝑟3 − 𝑟2 ~
1 1 −1
0 −5 3
0 0 0

. The rank of the last 

matrix is 2. Hence the dimension of the solution space is 3 – 2 = 1. 

We shall find a basis for the space reducing the matrix further. 

1 1 −1
0 −5 3
0 0 0

~
1

−5
𝑟2 ~

1 1 −1

0 1
−3

5

0 0 0

~ r1-r2 ~

1 0
2

5

0 1
−3

5

0 0 0

. 

In the language of equations this reads



x +
2

5
𝑧 = 0

y−
3

5
𝑧 = 0

0𝑧 = 0

. 

The bottom equation really says, "z may be anything you like" and 

the top two say 𝑥 = −
2

5
𝑧 and y =

3

5
𝑧. Hence every vector (𝑥, 𝑦, 𝑧) 

belonging to the solution space looks like (−
2

5
𝑧,

3

5
𝑧, 𝑧) = 

z(−
2

5
, 
3

5
, 1) and the set {(−

2

5
, 
3

5
, 1)} is a one-element basis for the 

space.



Example.

𝑥 + 𝑎𝑦 + 𝑎𝑧 = 1
𝑎𝑥 + 𝑎𝑦 + 𝑧 = 1
𝑎𝑥 + 𝑦 + 𝑎𝑧 = 1
𝑎𝑥 + 𝑎𝑦 + 𝑎𝑧 = 1

Discuss solvability of the system in terms of a.

൦ ൪

1 𝑎 𝑎 1
𝑎 𝑎 1 1
𝑎 1 𝑎 1
𝑎 𝑎 𝑎 1

~ 

𝑟2 − 𝑎𝑟1
𝑟3 − 𝑎𝑟1
𝑟4 − 𝑎𝑟1

~ ൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

. Since for 

a=1 everything except the top row becomes nil, it looks like a good idea 

to split cases.

Case 1, a=1. We get ൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

= ൦ ൪

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

In this case 𝑟(𝐴) = 𝑟(𝐴|𝐵) = 1. This means the system is solvable. It is 
reduced to 𝑥 + 𝑦 + 𝑧 = 1 hence, 𝑥 = 1 − 𝑦 − 𝑧; y and z are free.



Case 2, 𝑎  1. 

൦ ൪

1 𝑎 𝑎 1
0 𝑎 − 𝑎2 1 − 𝑎2 1 − 𝑎
0 1 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎
0 𝑎 − 𝑎2 𝑎 − 𝑎2 1 − 𝑎

~ 𝑑𝑖𝑣𝑖𝑑𝑒 𝑟𝑜𝑤𝑠 2,3, 𝑎𝑛𝑑 4 𝑏𝑦(1 − 𝑎)~

൦ ൪

1 𝑎 𝑎 1
0 𝑎 1 + 𝑎 1
0 1 + 𝑎 𝑎 1
0 𝑎 𝑎 1

~subtract row 4 from other rows~

൦ ൪

1 0 0 0
0 0 1 0
0 1 0 0
0 𝑎 𝑎 1

~r2 r3~ ൦ ൪

1 0 0 0
0 1 0 0
0 0 1 0
0 𝑎 𝑎 1

~r4− ar2−ar3~ ൦ ൪

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

𝑟(𝐴) = 3, 𝑟(𝐴|𝐵) = 4. The system is inconsistent.



Theorem.

Let 𝐴𝑋 = 𝐵 be an arbitrary system of linear equations. Let 𝑈 be 
the solution set and let 𝑣0 ∈ 𝑈 be a solution to the system.

Then 𝑈 = 𝑣0 +𝑊 = {𝑣0 +𝑤|𝑤 ∈ 𝑊}, where 𝑊 is the solution 
space of the corresponding homogeneous system 𝐴𝑋 = Θ.

Proof.

Each vector 𝑣 = 𝑣0 +𝑤 from 𝑣0 +𝑊 is a solution to 𝐴𝑋 = 𝐵. 
Indeed,

𝐴(𝑣0 + w) = 𝐴𝑣0 + 𝐴w = 𝐵 + Θ = 𝐵. Hence 𝑣0 +𝑊 ⊆ 𝑈

Moreover, for every vector 𝑧 ∈ 𝑈 we may put 𝑡 = 𝑧 − 𝑣0 so that
𝑧 = 𝑣0 + 𝑡. Then

𝐴𝑡 = 𝐴(𝑧 − 𝑣0) = 𝐴𝑧 − 𝐴𝑣0 = 𝐵 − 𝐵 = Θ

which means 𝑡 ∈ 𝑊. Hence, 𝑈 ⊆ 𝑣0 +𝑊. QED



Illustration.

(1) {−𝑥 + 𝑦 = 1 (a system of equation, one equation two 
unknowns)

(2) {−𝑥 + 𝑦 = 0 (the corresponding homogeneous system)

𝑣0 – a solution of (1)

v0



Definition.
Determinant (det for short) is a function defined on the set of all 
square matrices (nn matrices, n=1,2, …) over a field 𝕂 into 𝕂. 
The definition is inductive with respect to n:
1. if 𝑛 = 1, (𝐴 = [𝑎1,1]) then det(𝐴) = 𝑎1,1
2. if 𝑛 > 1

det 𝐴 =

𝑖=1

𝑛

−1 𝑖+1𝑎𝑖,1det(𝐴𝑖,1)

where 𝐴𝑖,𝑗 denotes the matrix obtained from 𝐴 by the removal of 

row number i and column j. det(𝐴) is also denoted by |𝐴|.

The formula is known as Laplace expansion on column 1.

Notice that we only use the symbol 𝐴𝑖,𝑗 in the case 𝑗 = 1.



Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

. 

det 𝐴 = 

𝑖=1

2

−1 𝑖+1𝑎𝑖,1 det 𝐴𝑖,1 = 𝑎1,1𝑎2,2 − 𝑎2,1𝑎1,2

In particular, 
2 3
1 −2

= 2 ⋅ −2 − 1 ⋅ 3 = −7



Example.

2. det

𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧

= −1 1+1𝑎 det
𝑞 𝑟
𝑦 𝑧 + −1 2+1𝑝 det

𝑏 𝑐
𝑦 𝑧

+ −1 3+1𝑥 det
𝑏 𝑐
𝑞 𝑟

=𝑎(𝑞𝑧 − 𝑟𝑦) − 𝑝(𝑏𝑧 − 𝑐𝑦) + 𝑥(𝑏𝑟 − 𝑞𝑐) =

aqz+pyc+xbr− cqx −rya −zbp. The last formula is known as the 

Sarrus Rule.

BEWARE !. It only works for 3 × 𝟑 matrices. 

𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧
𝑎 𝑏 𝑐
𝑝 𝑞 𝑟

+
+
+

−
−
−



Theorem. 

For every j = 1,2,… , 𝑛 and for every 𝑛𝑛 matrix 𝐴

det 𝐴 =

𝑖=1

𝑛

−1 𝑖+𝑗𝑎𝑖,𝑗det(𝐴𝑖,𝑗)

Proof. Omitted.

Remark. The theorem says that instead of Laplace expansion on 
column 1 we can do Laplace expansion on column j, for every j.

Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

by Laplace expansion on column 2. 

det 𝐴 = 

𝑖=1

2

−1 𝑖+2𝑎𝑖,2 det 𝐴𝑖,2 = −𝑎1,2𝑎2,1 + 𝑎2,2𝑎1,1



Theorem. (determinant versus transposition)

For every matrix A det 𝐴 = det(𝐴𝑇)

Proof. Omitted.

Remark. The theorem says (indirectly) that instead of Laplace 
expansion on columns we can do Laplace expansion on rows.

Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

by Laplace expansion on row 1. 

det 𝐴 = 

𝑖=1

2

−1 1+𝑖𝑎1,𝑖 det 𝐴1,𝑖 = 𝑎1,1𝑎2,2 − 𝑎1,2𝑎2,1



Theorem. (determinant versus EROS)

For every matrix 𝐴

1. If 𝐴 ~ (𝑟𝑖↔ 𝑟𝑗)𝐵 then det 𝐵 = −det(𝐴) (𝑖 ≠ j)

2. If 𝐴 ~ (𝑟𝑖 ← 𝑐𝑟𝑖)𝐵 then det 𝐵 = 𝑐det(𝐴)

3. If 𝐴 ~ (𝑟𝑖 ← 𝑟𝑖 + 𝑟𝑗)𝐵 and 𝑖 ≠ j then det 𝐵 = det(𝐴)

4. Combining 3 with 2 we get

If 𝐴 ~ (𝑟𝑖 ← 𝑟𝑖 + 𝑐𝑟𝑗)𝐵 and 𝑖 ≠ j then det 𝐵 = det(𝐴).

Proof. Omitted.

Remark. Thanks to the transposition law the theorem applies also 
to column rather than row operations.

Remark.
"𝐴 ~ (𝑟𝑖 ← 𝑐𝑟𝑖)𝐵" means "𝐵 has been obtained from 𝐴 by 
replacing 𝑟𝑖 of 𝐴 with 𝑐𝑟𝑖".



Theorem. (determinant versus not-quite-matrix-addition)

Suppose s ∈ {1,2,… , n} and 𝐴[𝑖, 𝑗] = 𝐵[𝑖, 𝑗] = 𝐶[𝑖, 𝑗] for every i,j
such that 𝑗 ≠ 𝑠 and 𝐶[𝑖, 𝑠] = 𝐴[𝑖, 𝑠] + 𝐵[𝑖, 𝑠]. Then det(𝐶) =
det(𝐴) + det(𝐵).

Proof..

det 

c1,1 … a1,𝑠 + 𝑏1,𝑠 … c1,𝑛
c2,1 … a2,𝑠 + 𝑏2,𝑠 … c2,𝑛
⋮ ⋮ ⋮ ⋮ ⋮

c𝑛,1 … a𝑚,𝑠 + 𝑏𝑛,𝑠 … c𝑛,𝑛

=

σ𝑖=1
𝑛 −1 𝑖+𝑠(𝑎𝑖,𝑠+𝑏𝑖,𝑠) det(𝐶𝑖,𝑠) = σ𝑖=1

𝑛 −1 𝑖+𝑠𝑎𝑖,𝑠 det(𝐶𝑖,𝑠) +

σ𝑖=1
𝑛 −1 𝑖+𝑠𝑏𝑖,𝑠 det(𝐶𝑖,𝑠) = det(𝐴) + det(𝐵).

Warning. This is NOT about determinant of the sum of two matrices 

being equal to the sum of their determinants; that is not true. This is 

about determinant of a matrix whose ONE column is the sum of two 

vectors.

By Laplace 
expansion 
on column s


